

Goblin Thunder Sport

Release 1.0-September 2017

WORLD DISTRIBUTION

www.goblin-helicopter.com

For sales inquiries, please email: sales@goblin-helicopter.com
For info inquiries, please email: support@goblin-helicopter.com
Attention: If you are a consumer and have questions or need of assistance,
please contact in a first time the Goblin retailer where you made the purchase

EUROPEAN DISTRIBUTION

www.sabitaly.it
For sales inquiries, please email: sales@sabitaly.it
For info inquiries, please email: info@sabitaly.it
Attention: If you are a consumer and have questions or need of assistance,
please contact in a first time the Goblin retailer where you made the purchase

Please read this user manual carefully, it contains instructions for the correct assembly of the model. Please refer to the web site www.goblin-helicopter.com for updates and other important information.

VERY IMPORTANT

In the Manual bag you will find a product card your with serial number. Please take a moment to register your kit online via our web site at:

http://www.goblin-helicopter.com

It is extremely important that you take a moment to register your helicopter with us. This is the only way to ensure that you are properly informed about changes to your kit, such as upgrades, retrofits and other important developments. SAB Heli Division cannot be held responsible for issues arising with your model and will not provide support unless you register your serial number.

The Serial number is also engraved in the Aluminum Main Plate.
Thank you for your purchase, we hope you enjoy your new Goblin helicopter!
SAB Heli Division

INDEX

1 - Serial Number	7	- Assembling The Modules	13 - Installation of the Boom, Canopy
2 - Important Notes A	8	- Installation of Swashplate Servos	14 - Battery
3 - Components and Box	9	- Installation of The Motor	$\underline{15-\text { In flight }}$ -
4 - Carbon frame Assembly	10 - Installation of The ESC	16 - Maintenance	
5 - Trasmission Assembly	11 - Installation of Flybarless Unit and RX	17 - Exploded Views	
6 - Main rotor	12 - Tail Assembly		

SPECIFICATIONS

Main rotor diameter: 1548 mm (with 690 mm Blades) Tail rotor diameter: 305 mm (with 115 mm Tail Blades)

IMPORTANT NOTES

*This radio controlled helicopter is not a toy.
*This radio controlled helicopter can be very dangerous.
*This radio controlled helicopter is a technically complex device which has to be built and handled very carefully.
*This radio controlled helicopter must be built following these instructions. This manual provides the necessary information to correctly assemble the model. It is necessary to carefully follow all the instructions.
*Inexperienced pilots must be monitored by expert pilots.
*All operators must wear safety glasses and take appropriate safety precautions.
*A radio controlled helicopter must only be used in open spaces without obstacles, and far enough from people to minimize the possibility of accidents or of injury to property or persons.
*A radio controlled helicopter can behave in an unexpected manner, causing loss of control of the model, making it very dangerous.
*Lack of care with assembly or maintenance can result in an unreliable and dangerous model.
*Neither SAB Heli Division nor its agents have any control over the assembly, maintenance and use of this product. Therefore, no responsibility can be traced back to the manufacturer. You hereby agree to release SAB Heli Division from any responsibility or liability arising from the use of this product.

SAFETY GUIDELINES

*Fly only in areas dedicated to the use of model helicopters.
*Follow all control procedures for the radio frequency system.
*It is necessary that you know your radio system well. Check all functions of the transmitter before every flight.
*The blades of the model rotate at a very high speed; be aware of the danger they pose and the damage they may cause.
*Never fly in the vicinity of other people.

NOTES FOR ASSEMBLY

Please refer to this manual for assembly instructions for this model.
Follow the order of assembly indicated. The instructions are divided into chapters, which are structured in a way that each step is based on the work done in the previous step. Changing the order of assembly may result in additional or unnecessary steps.
Use thread lockers and retaining compounds as indicated. In general, each bolt or screw that engages with a metal part requires thread lock.

It is necessary to pay attention to the symbols listed below:

ADDITIONAL COMPONENTS REQUIRED

*690-710mm Main Blade.
*105-115mm Tail Blade.
*Electric Motor: 12S - 480/600Kv
Maximum diameter 64 mm ,
Maximum height 64 mm ,
Pinion shaft diameter $6 / 8 \mathrm{~mm}$
*Speed controller: minimum 120A to be safe
*Batteries: 12 S - 3700/5500mAh
*1 flybarless 3 axis control unit
*Radio power system, if not integrated with the ESC
*3 cyclic servos
*1 tail rotor servo
*6 channel radio control system on 2.4 GHz

TOOLS, LUBRICANTS, ADHESIVES

*Generic pliers
*Hexagonal driver, size 1.5, 2, 2.5, 3, 4, 5mm
*4mm T-Wrench
*5.5mm Socket wrench (for M3 nuts)
*8mm Hex fork wrench (for M5 nuts)
*Medium threadlocker (eg. Loctite 243)
*Strong retaining compound (eg. Loctite 648)
*Spray lubricant (eg. Try-Flow Oil)
*Synthetic grease (eg. Tri-Flow Synthetic Grease)
*Grease (eg. Vaseline grease)
*Cyanoacrylate adhesive
*Pitch Gauge (for set-up)
*Soldering equipment (for motor wiring)
(See configuration examples on page 17) Inside the main box there are:

Box 2: Canopy, Blade Holder.
Box 3: Boom, Carbon rod.
Box 4: Mechanical parts in 4 trays:
Tray 1: Main rotor
Tray 2: Carbon frame and tail rotor
Tray 3: Transmission
Tray 4: Main structure
Box 5: Bags
Box 6: Carbon parts
Box 7: Empty

> The assembly process is described in the following chapters. Each chapter provides you with the box, bag and/or foam tray numbers you will need for that chapter. The information is printed in a green box in the upper right hand corner of the page at the beginning of every chapter.

The manufacturing process of the carbon parts often leaves micro-burrs and sharp edges. We recommend de-burring the edges to minimize the risks of electrical wire cuts, etc. Very important in red line zone.

Battery Tray Assembly

Chapter 4, Carbon Frame
BAG 1.2, BAG 1.3

Chapter 5, Transmission Assembly

Note for 6 mm motor shaft

To maximize space for the batteries, it is advisable to shorten the motor shaft. Follow the dimensions given in this drawing. For the cut, you can use an electric tool like a "Dremel" with a cutoff disc.

Additionally, ensure the motor shaft has an appropriate 'flat' for one of the set screws.

Note:

The HPS head should be assembled with one, 1 mm shim (HC230) and one, 0.2 mm shim (HC232) on each side. The blade grips must move freely, but they should not move just under their own weight. If the blade grips are too

Chapter 7, Assembling The Modules
BAG 7 ®

[HC212-S]

INSTALLATION OF SWASHPLATE SERVOS

The linkage ball must be positioned between 17-19 mm out on the servo arm (Figure 1), recommended servo arm SAB p / n [HA050/HA051]. The 120° placement of the servos inside Goblin means the arms are difficult to access. For this reason it is advisable to ensure alignment of the servo arms (and sub trim set) before installation of the servos in the model. Proceed with installation following the instructions below. Figure $\mathbf{2}$ shows a completed installation.

Fig. 1

ASSEMBLY OF THE BALL ON THE HORN.

The rods going from the servos to the swash plate must be as vertical as possible. Not all servos are equal, so to better align them you can choose to use the supplied spacer H0031.
Figure $\mathbf{3}$ illustrates this.

Fig. 3

SERVO ASSEMBLY 1, 2, 3

Socket Head Cap Screw M2x8mm (HCOO8-S)
or
Socket Head Cap Screw M2x6mm (HCOO4-S) without Uniball Spacer

Socket Head Cap Screw M2.5x8mm (HCO20-S) \qquad
Socket Head Cap Screw M2.5x12mm (HCO26-S)

Chapter 8, Installation Of Swashplate Servos BAG $8 \curvearrowright$

Head HPS Version Preliminary Setup

Adjust the linkage as shown. The linkage Rod A has thead right/left.
Turning, you can change the tracking without disconnecting the plastic ball link.

Page 16

TRANSMISSION SETUP

It is important to choose the right reduction ratio to maximize efficiency based on your required flight performance.
The Goblin has many possible reduction ratios at your disposal. It is possible to optimize any motor and battery combination.
It is recommended to use wiring and connectors appropriate for the currents generated in a helicopter of this class.

If you are using a head speed calculator which requires a main gear and pinion tooth count, use 214 teeth for the main gear (this takes into account the two stage reduction) and the tooth count of your pulley as the pinion count.

Below is a list of available reduction ratios:
H0175-18-S - 18T Pinion = ratio 11.9:1

H0175-22-S $-22 T$	Pinion = ratio	$9.8: 1$
H0175-23-S - $23 T$	Pinion = ratio	$9.3: 1$
H0175-24-S $-24 T$	Pinion = ratio	$8.9: 1$
H0175-25-S $-25 T$	Pinion = ratio	$8.6: 1$

Some example configurations:

GOBLIN THUNDER SPORT CONFIGURATIONS

Battery	Motor	ESC	$\begin{gathered} \text { Pinion } \\ (\mathrm{a}, \mathrm{~b} \mathrm{c}) \end{gathered}$	RPM Max (a, b, c)	Rev:O
$\begin{gathered} 12 \mathrm{~S} \\ 4200 / 5500 \mathrm{mAh} \end{gathered}$	$\begin{gathered} \text { Xnova } \\ 4530-525 \end{gathered}$	$\begin{aligned} & \text { CC Edge HV } 160 \\ & \text { HW-160A-V4 } \end{aligned}$	22T / 23T / 24T	$\frac{!}{\text { 2100/2200/2300 }}$	± 13
		Kosmik 160	21T / 22T / 23T		
	$\begin{aligned} & \text { Scorpion } \\ & \text { HKIII 4525-520 } \end{aligned}$	$\begin{aligned} & \text { CC Edge HV } 160 \\ & \text { HW-160A-V4 } \end{aligned}$	22T / 23T / 24T		
		Kosmik 160	21T / 22T / 23T		
	Kontronik Pyro 800-480	$\begin{gathered} \text { CC Edge HV } 160 \\ \text { HW-160A-V4 } \end{gathered}$	23T / 24T		
		Kosmik 160	22T / 23T / 24T		

Note: For safety reasons we suggest to not exceed 2200rpm.

Chapter 9, Installation Of The Motor

MOTOR BELT TENSION

*Assemble the motor and pinion to its mounting plate.
*Fit the motor assembly into position.
*Compress the springs by pushing the motor toward the main shaft.
*At maximum compression, temporarily tighten one of the slide screws.
*With the minimum centre distance it is easy to install the belt. First put the belt on the motor pinion.
*Then put the belt around the big pulley.
*Rotate the motor several times by hand.
*Release the screw that locks the slide.
*The springs keep the belt in tension.
*Help the springs by pulling the motor slightly.
*The belt must be very tight.
*Lock all screws.

Figure 1 shows the motor correctly wired. It is advisable to cover the wire joints between the motor and the ESC with heat shrink tubing.

DE-BURR THE SIDE FRAMES

We recommend de-burring the edges of the carbon parts in areas where electrical wires run.

ESC INSTALLATION

The speed controller (ESC) is installed in the front of the helicopter.
Figure 1: Show the ESC support. You can use hole or slot in according with your ESC.
Figure 2: Show the installation of the ESC.

Fig. 1

Fig. 2

Figure 3: You can see the wiring for connecting the ESC to the central unit.
Route the ESC throttle wire as shown, It is reccomanded to ues cable ties to keep the wire in place. This is very important near the tail belt.

Chapter 11, Installation Of Flybarless Unit and RX BAG $9 \longleftarrow$

fLYBARLESS CONTROL UNIT AND RX INSTALLATION

Figures 1 shows an example of installation of the flybarless control unit.
You can use short spacer H0727 (Figure 2).
You can use long spacer H0043 (Figure 3). This is typical if you want to put RX satellite under the control unit.

If you want to assembly RX under FBL
support. You can use H0043 [26 mm].

crew M3x8mm
Screw M3x
(HC134-S)
Fig. 2
Socket Head Cap

Chapter 12, Tail System

Tail Rotor Hub Assembly

Tail Pitch Slider Assembly

Button Head Cap Thrust Bearing
Screw M4x6mm

Note:

It is a normal for the tail to feel a bit tight after initial assembly as the tail spindle preload is ussually high when the helicopter is brand new. The preload will loosen up after 2-5 flights allowing the system to become smooth.

Tail Blade Grip Bearing $\varnothing 5 \times \varnothing 10 \times 4 \mathrm{~mm}$ (H0327BM-S)
(HC411-S)
Spacer $\varnothing 5 x \varnothing 9 \times 0.75 \mathrm{~mm}$ (H0330-S)

Tail Pitch Slider Link Assembly

Bell Crank Lever Assembly

Tail Side Plate Assembly

Before assembling the two parts in the boom we suggest tightening the M2.5 screws into the two plastic parts to pre-thread them. In this way when you will assemble the tail servo it will be easier to tighten the screws into the plastic parts. Check the tail servo can fit, if necessary carefully sand the hole.

DETAIL B

Assemble H0045-S in the boom:

Before mounting H0045 on the boom we suggest to first tighten the M2.5 screws into the holes to thread them. In this way when you assemble the part it will be easier to tighten the screws.

Locking Element Tail Assembly x 2
Already Assembled

Note: Before put plastic ball in threaded rod, please wait 12 hours after bonding

Threaded Rod M2.5x40mm (HC242-S)

Threaded Rod M2.5x40mm (HC242-S)

Note:

Chapter 13, Installation Of The Boom

BOOM ASSEMBLY

*Insert the tail boom assembly.
*Lock the M8 nuts with the HA016 special tool supplied.
*Firmly lock the lateral srews $\mathrm{M} 3 \times 12 \mathrm{~mm}$. Use Loctile for this screw and make sure you remain tight.
*Assemble the H0038 carbon security plate.
*Connect the tail servo wire to the previously fitted extension lead.

Page 26

TAIL BELT TENSION

*Check the proper assembly of the tail boom.
*Check that the aluminum part of the tube is against the M3 stop screw.
*Loosen the tail group by loosening the 4 M3 screws.
*Install the belt onto the pulley, taking care to respect the direction of rotation (figure 1).
*Rotate the tail drive several times by hand.
*Load the spring by a rotation of $\mathbf{2 7 0 ^ { \circ }}$ the tensioning arm (clockwise).
*Tension the boom until the tensioning arm is aligned with the frame.
*Tighten the 4 screws.
*Check that the tail output shaft is perpendicular to the tube. (figure 2)
*In figure 3,4,5 you can see the three conditions, ok, too loose and too tight.
NOTE. To disassemble the tail boom, you can remove the front pulley (H0172-S) without loosening the tail box. Simply remove the bolt and pull down.

Fig. 1

CANOPY

Install the canopy following these step :

- Canopy edge protection, Adhesive foam tape, Canopy grommets. (Fig.6)(Fig.7).

The canopy hole must be 12.5 mm in diameter. Initially is a bit smaller.
You can enlarge the hole slightly to optimize the vertical position of the canopy itself.
The canopy is locked at the point shown in figure 8 and with two H0036 knobs Fig. 9 .
Confirm the canopy is secure prior to each flight.

SAB HELI DIVISIロN

[^0]Chapter 14, Battery
BAG $18 \curvearrowright$
\rightarrow

Note: Using sandpaper, sand the slot where you insert the battery strap. This helps increase the life of the strap.

The battery tray system in the Goblin 700 is simple, but very effective.
The battery should be attached to the tray (Part H0149) with heat shrink, tape or velcro.
You can optionally use the battery protection tray (Part H0151) see Fig. 1, 2.
Before permanently mounting the batteries onto the battery tray, check the ideal position
for the best center of gravity.
Cut the heat shrink around the carbon fiber tray locking pins. Fig. 3.
Battery Pack:
Slide the tray until it locks into the CNC stopper. Fig. 4, 5.
Using the velcro straps, making sure that the two locking pins are stopped against the frame spacer
(Part1\#H0003 and \#H0151) Fig.6, 7.

Page 28

OPERATIONS BEFORE FLIGHT

*Set up the remote control and the flybarless system with utmost care.
*It is advisable to test the correct settings of the remote and flybarless system without main blades or tail blades fitted.
*Check that all wiring is isolated from the carbon/aluminum parts. It is good practice to protect them at the points where they are at most risk.
*Be sure of the gear ratio, verifying carefully the motor pulley in use. The forces acting on the mechanics increase enormously with increasing of rpm. Although the Goblin can fly at high rpm, for safety reasons we suggest to not exceed 2200 rpm .
*Check the correct tension of the tail belt through the belt tensioner.
*Fit the main blades and tail blades. (Fig. 1 and Fig.2)
*Please make sure the main blades are tight on the blade grips, you should be able to violently jerk the head in both directions and the blades should not fold. Failure to tighten the blades properly can result in a boom strike. To fold the blades for storage, it is advisable to loosen them.
*Check the collective and cyclic pitch. For 3D flight, set about +/-13 ${ }^{\circ}$.
*It is important to check the correct tracking of the main blades.
*On the Goblin, in order to correct the tracking, adjust the main link rod as shown in Fig. 3.
This is provided with a right/left thread system that allows continuous fine adjustments of the length of the control rod; for this adjustment it is not necessary to detach the ball link.
*Perform the first flight at a low headspeed, 1800 RPM.
After this first flight, do a general check of the helicopter. Verify that all screws are correctly tightened.

IN FLIGHT

During its first flights the Goblin has to be "run in".
The Damper, the main gear, the uniball and other parts must undergo some slight wear to operate smoothly. It is likely that during the very first flights the model may exhibit a swaying phenomena, particularly at low head speed.
This phenomena disappears after a few flights.
If you want to fly in a generic way, using both low headspeed and high headspeed, the standard setting is the best compromise
However, if you prefer flying at low speed [$<\mathbf{2 1 0 0} \mathbf{~ r p m}$], for best results we recommend changing the tail pulley for a smaller one to increase tail rotor rpm. In this way, you will have extremely precise tail control even at low RPM. This pulley is available in the upgrade list [H0155-S]

ABOUT HPS

The HPS head allows for a very broad range of dampening setups.
The dampers are composed of an O-ring and a technopolymer damper that defines the maximum possible movement of the spindle.Using different dampers we can get different responses of the model.

A = Soft for smooth response.
B = Medium.
$\mathrm{C}=$ Firm for direct and precise response.
In the kit, there is the damper H0426-B.
(Other Setting >>p/n H0426-S).

MAINTENANCE

*On the Goblin, areas to look for wear include:

* Motor belt
* Tail belt
* Damper
* Main gear and pinion

The lifespan of these components varies according to the type of flying. On average it is recommended to replace these special parts every 100 flights.
*The head tends to lose rigidity after a while. Check this condition every 20 flights. Preloading with precision shim washers, it is possible to vary the rigidity of the head.
*Check all uniballs often.
*The most stressed bearings are definitely those of the tail shaft. Check them frequently.
All other parts are not particularly subject to wear.
*Periodically lubricate the tail slider and its linkages, as well as the swashplate and its linkages.
*Lubricate the main gear with silicone and Tri-Flow Synthetic grease, even though the gear is made of technopolymer, a high mineral based filler, it still requires some lubrication.
*Check the screws that are highlighted in the following images frequently, make sure you remain tight (fig. 2 and fig.3).
*To ensure safety you should do a general inspection of the helicopter after each flight. You should check:

* The maintenance of proper belt tension.
* The proper isolation of wires from the carbon and aluminum parts.
* That all screws remain tight.

Chapter 17, Spare Parts

Bearing Support [H0143-S] - $1 \times$ Bearing Support. $-1 \times$ Flanged Bearing $\varnothing 6 \times \varnothing 13 \times 5 \mathrm{~mm}$. - $2 \times$ Socket Head Cap Screws M3x8mm.	 - $1 \times$ Battery Plate. - $1 \times$ Battery Protection. - 2 x Cylinder M2.5. $-2 \times$ Flat Cap Screw M2.5x5mm - $1 \times$ Heat Shrink.	Stop Battery Tray [H0150-S] - 1 x Stop Battery Tray. - $2 \times$ Socket Head Cap Screw M2.5x8mm.	Carbon Fiber ESC Support (H0153-S) - $1 \times$ Carbon Fiber ESC Support. - $6 \times$ Flat Head Socket Cap Screw M2,5x5mm.
19T Drive Pinion [H0156-S] - $1 \times$ 19T Drive Pinion. - $1 \times$ Socket Head Cap Screw Shouldered M3x19mm. -1 x Metric Hex Nylon Nut M3.	Secondary Shaft [H0157-S] - 1 x Secondary Shaft M3. - 1 x Socket Head Cap Screw Shoulder M2.5x19mm. - 1 x Metric Hex Nylon Nut M2,5. - $1 \times$ Socket Head Cap Shoulder M3x19mm. - 1 x Metric Hex locknut Nut M3.	Aluminum Blade Spacer [H0158-S] $-4 \times$ Aluminum Blade Spacer.	Double Bearing One Way Pulley [H0171-S] - 1 x Aluminum Double Bearing One Way Pulley Assembly. $-3 \times$ Shims $\varnothing 10 \times \varnothing 16 \times 0,2 \mathrm{~mm}$. -1 x One Way Brass Bushing.

Plastic Ball Link [H0402-S] - $5 \times$ Plastic Ball Link.	CNC Derlin Main Gear [H0405-S] - 1 x CNC Derlin Main Gear Set.	Bell Crank Lever [H0406BM-S] $-2 \times$ Tail Pin. - 1 x Uniball M2. - 1 x Uniball Spacer. - 1 x Bell Crank Lever. $-2 \times$ Flanged Bearing $\varnothing 3 x \varnothing 7 \times 3 m$ - $1 \times$ Head Cap Screws M3x22mm. - $1 \times$ Head Cap Screws M2x8mm. $-1 \times$ Washer $\varnothing 3 \times \varnothing 4 \times 0.5 \mathrm{~mm}$. - 1 x Spacer $\varnothing 3 \times \varnothing 4 \times 9.6 \mathrm{~mm}$.	
Tail Pitch Slider [H0407-S] - 1 x Tail Pitch Slider SET.	Main Linkage [H0417-S] - $2 \times$ Main Linkage. - $4 \times$ Uniballs M3.	Swashplate Set HPS [H0422BM-S) - 1 x Swashplate Assembly. $-2 \times$ Bearings $\varnothing 30 x \emptyset 37 \times 4 \mathrm{~mm}$. - 6 x Uniballs M3x4 5 H3. - 1 x Uniball M3x45 H18. $-3 x$ Head Cap Screws M2x5mm. - 3 x Swasher $\varnothing 2 x \not \subset 5 x 0.5 \mathrm{~mm}$	Damper [H0426-S) $\begin{aligned} & -3 \times \text { H0426-A. } \\ & -3 \times \text { H0426-B. } \\ & -3 \times \text { H0426-C. } \\ & -3 \times \text { Washers } \varnothing 10 \times \varnothing 16 \times 1 \mathrm{~mm} . \\ & -3 \times \text { Washers } \varnothing 10 \times \varnothing 16 \times 0.2 \mathrm{~mm} . \\ & -3 \times \text { Orings } 3050 . \end{aligned}$
Landing Gear Rod [H0431-S] - $2 \times$ Landing Gear Rod. - $4 \times$ Landing Gear Plug. $-4 \times$ OR DI=6,75, $\mathrm{S}=1,78$.	F3C Landing Gear Set [H0454-S] $-2 \times$ Plastic Landing Gear Support. $-2 \times$ Aluminum Landing Skid. - $4 \times$ Cone Point Set Screws M4x4. - $4 \times$ Aluminum M3 Washer. - $4 \times$ Head Cap Screw M3x16mm. - $4 \times$ M3 Lock Nut.		$g \varnothing 10 \times \varnothing 18 \times 5.5 \mathrm{~mm}$. $\varnothing 19 \times 5 \mathrm{~mm}$. $\varnothing 16 \times 1 \mathrm{~mm}$. Cap Screw M4x10mm.
FBL Support Low [H0727-S] - 3 x FBL Support Low. $-5 \times$ Head Cap Screw M3x8mm. -1 x Flat Head Cap Screw M3x8mm.	Canopy Thunder Sport [H0929-S] - 1 x Canopy Thunder Black. - 1 x Canopy Grommet. - 1 x Canopy Mousse. - 1 x Canopy Edge Protection.		
Boom Thunder Sport [H0930-S] 700 - 1 x Boom Thunder Sport. $-2 \times$ Locking Element Tails. $-2 \times$ Double-Sided Tapes. $-1 \times$ Set Screws M3 x 20mm. $-2 \times$ Washers $3.1 \times 12 \times 1.8 \mathrm{~mm}$. $-4 \times$ Metric Hex Nylon Nuts M3. - $2 \times$ Boom spacers.	SAB HEL DIVISION $-2 \times$ Head Cap Screws M3 x 12mm. - 2 x Nylon Screw M8x20mm. -1 x Flat Head Cap Screws M3x8mm.	Vertical Fin [H0684-S]	$-1 \times$ Main Frame.

Chapter 17, Spare Parts

[^0]: Page 27

